QUADRATIC EQUATIONS

S.no	Terms	Descriptions
1	Quadratic Polynomial	$P(x) = ax^2 +bx+c$ where $a \ne 0$
2	Quadratic equation	ax² +bx+c =0 where a≠0
3	Solution or root of the Quadratic equation	A real number α is called the root or solution of the quadratic equation if $a\alpha^2 + b\alpha + c = 0$
4	zeroes of the polynomial p(x).	The root of the quadratic equation are called zeroes
5	Maximum roots of quadratic equations	We know from chapter two that a polynomial of degree can have max two zeroes. So a quadratic equation can have maximum two roots
6	Condition for real roots	A quadratic equation has real roots if b ² - 4ac > 0

How to Solve Quadratic equation:

S.no	Method	Working
1	factorization	This method we factorize the equation by splitting the middle term b
		In ax ² +bx+c=0
		Example
		6x ² -x-2=0
		1) First we need to multiple the coefficient a and c.In this case =6X-2=-12
		2) Splitting the middle term so that multiplication is 12 and difference is the coefficient b
		6x ² +3x-4x-2=0
		3x(2x+1) -2(2x+1)=0
		(3x-2) (2x+1)=0
		3) Roots of the equation can be find equating the factors to zero
		3x-2=0 => x=3/2
		2x+1=0 => x=-1/2

2 Square method		In this method we create square on LHS and RHS and then find the value.	
		ax² +bx+c=0	
		1) x ² +(b/a) x+(c/a)=0	
		2) (x+b/2a) ² -(b/2a) ² +(c/a)=0	
		3) $(x+b/2a)^2=(b^2-4ac)/4a^2$	
		$4) x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
		Example	
		x ² +4x-5=0	
		1) (x+2) ² -4-5=0	
	2) (x+2) ² =9		
		3) Roots of the equation can be find using square root on both the sides	
		x+2 =-3 => x=-5	
		x+2=3=> x=1	
3	Quadratic method	For quadratic equation	
		$ax^2 +bx+c=0$,	
		roots are given by	
		$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$, $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$	
		For b ² -4ac > 0, Quadratic equation has two real roots of different value	
		For b ² -4ac =0, quadratic equation has one real root	
		For b ² -4ac < 0, no real roots for quadratic equation	

Nature Of roots of Quadratic equation:

S.no	Condition	Nature of roots
1	b ² -4ac > 0	Two distinct real roots
2	b^2 -4ac =0	One real root
3	$b^2-4ac < 0$	No real roots

